phasm/phasm/type3/constraints.py
2023-11-15 12:06:25 +01:00

573 lines
20 KiB
Python

"""
This module contains possible constraints generated based on the AST
These need to be resolved before the program can be compiled.
"""
from typing import Dict, Optional, List, Tuple, Union
from .. import ourlang
from . import types
class Error:
"""
An error returned by the check functions for a contraint
This means the programmer has to make some kind of chance to the
typing of their program before the compiler can do its thing.
"""
def __init__(self, msg: str, *, comment: Optional[str] = None) -> None:
self.msg = msg
self.comment = comment
def __repr__(self) -> str:
return f'Error({repr(self.msg)}, comment={repr(self.comment)})'
class RequireTypeSubstitutes:
"""
Returned by the check function for a contraint if they do not have all
their types substituted yet.
Hopefully, another constraint will give the right information about the
typing of the program, so this constraint can be updated.
"""
SubstitutionMap = Dict[types.PlaceholderForType, types.Type3]
NewConstraintList = List['ConstraintBase']
CheckResult = Union[None, SubstitutionMap, Error, NewConstraintList, RequireTypeSubstitutes]
HumanReadableRet = Tuple[str, Dict[str, Union[str, ourlang.Expression, types.Type3, types.PlaceholderForType]]]
class Context:
"""
Context for constraints
"""
__slots__ = ()
class ConstraintBase:
"""
Base class for constraints
"""
__slots__ = ('comment', )
comment: Optional[str]
"""
A comment to help the programmer with debugging the types in their program
"""
def __init__(self, comment: Optional[str] = None) -> None:
self.comment = comment
def check(self) -> CheckResult:
"""
Checks if the constraint hold
This function can return an error, if the constraint does not hold,
which indicates an error in the typing of the input program.
This function can return RequireTypeSubstitutes(), if we cannot deduce
all the types yet.
This function can return a SubstitutionMap, if during the evaluation
of the contraint we discovered new types. In this case, the constraint
is expected to hold.
This function can return None, if the constraint holds, but no new
information was deduced from evaluating this constraint.
"""
raise NotImplementedError(self.__class__, self.check)
def human_readable(self) -> HumanReadableRet:
"""
Returns a more human readable form of this constraint
"""
return repr(self), {}
class SameTypeConstraint(ConstraintBase):
"""
Verifies that a number of types all are the same type
"""
__slots__ = ('type_list', )
type_list: List[types.Type3OrPlaceholder]
def __init__(self, *type_list: types.Type3OrPlaceholder, comment: Optional[str] = None) -> None:
super().__init__(comment=comment)
assert len(type_list) > 1
self.type_list = [*type_list]
def check(self) -> CheckResult:
known_types: List[types.Type3] = []
placeholders = []
for typ in self.type_list:
if isinstance(typ, types.IntType3):
known_types.append(typ)
continue
if isinstance(typ, (types.PrimitiveType3, types.StructType3, )):
known_types.append(typ)
continue
if isinstance(typ, types.AppliedType3):
known_types.append(typ)
continue
if isinstance(typ, types.PlaceholderForType):
if typ.resolve_as is not None:
known_types.append(typ.resolve_as)
else:
placeholders.append(typ)
continue
raise NotImplementedError(typ)
if not known_types:
return RequireTypeSubstitutes()
new_constraint_list: List[ConstraintBase] = []
first_type = known_types[0]
for typ in known_types[1:]:
if isinstance(first_type, types.AppliedType3) and isinstance(typ, types.AppliedType3):
if first_type.base is types.tuple and typ.base is types.static_array:
# Swap so we can reuse the code below
# Hope that it still gives proper type errors
first_type, typ = typ, first_type
if first_type.base is types.static_array and typ.base is types.tuple:
assert isinstance(first_type.args[1], types.IntType3)
length = first_type.args[1].value
if len(typ.args) != length:
return Error('Mismatch between applied types argument count', comment=self.comment)
for typ_arg in typ.args:
new_constraint_list.append(SameTypeConstraint(
first_type.args[0], typ_arg
))
continue
if first_type.base != typ.base:
return Error('Mismatch between applied types base', comment=self.comment)
if len(first_type.args) != len(typ.args):
return Error('Mismatch between applied types argument count', comment=self.comment)
for first_type_arg, typ_arg in zip(first_type.args, typ.args):
new_constraint_list.append(SameTypeConstraint(
first_type_arg, typ_arg
))
continue
if typ != first_type:
return Error(f'{typ:s} must be {first_type:s} instead', comment=self.comment)
if new_constraint_list:
# If this happens, make CheckResult a class that can have both
assert not placeholders, 'Cannot (yet) return both new placeholders and new constraints'
return new_constraint_list
if not placeholders:
return None
for typ in placeholders:
typ.resolve_as = first_type
return {
typ: first_type
for typ in placeholders
}
def human_readable(self) -> HumanReadableRet:
return (
' == '.join('{t' + str(idx) + '}' for idx in range(len(self.type_list))),
{
't' + str(idx): typ
for idx, typ in enumerate(self.type_list)
},
)
def __repr__(self) -> str:
args = ', '.join(repr(x) for x in self.type_list)
return f'SameTypeConstraint({args}, comment={repr(self.comment)})'
class IntegerCompareConstraint(ConstraintBase):
"""
Verifies that the given IntType3 are in order (<=)
"""
__slots__ = ('int_type3_list', )
int_type3_list: List[types.IntType3]
def __init__(self, *int_type3: types.IntType3, comment: Optional[str] = None) -> None:
super().__init__(comment=comment)
assert len(int_type3) > 1
self.int_type3_list = [*int_type3]
def check(self) -> CheckResult:
val_list = [x.value for x in self.int_type3_list]
prev_val = val_list.pop(0)
for next_val in val_list:
if prev_val > next_val:
return Error(f'{prev_val} must be less or equal than {next_val}')
prev_val = next_val
return None
def human_readable(self) -> HumanReadableRet:
return (
' <= '.join('{t' + str(idx) + '}' for idx in range(len(self.int_type3_list))),
{
't' + str(idx): typ
for idx, typ in enumerate(self.int_type3_list)
},
)
def __repr__(self) -> str:
args = ', '.join(repr(x) for x in self.int_type3_list)
return f'IntegerCompareConstraint({args}, comment={repr(self.comment)})'
class CastableConstraint(ConstraintBase):
"""
A type can be cast to another type
"""
__slots__ = ('from_type3', 'to_type3', )
from_type3: types.Type3OrPlaceholder
to_type3: types.Type3OrPlaceholder
def __init__(self, from_type3: types.Type3OrPlaceholder, to_type3: types.Type3OrPlaceholder, comment: Optional[str] = None) -> None:
super().__init__(comment=comment)
self.from_type3 = from_type3
self.to_type3 = to_type3
def check(self) -> CheckResult:
ftyp = self.from_type3
if isinstance(ftyp, types.PlaceholderForType) and ftyp.resolve_as is not None:
ftyp = ftyp.resolve_as
ttyp = self.to_type3
if isinstance(ttyp, types.PlaceholderForType) and ttyp.resolve_as is not None:
ttyp = ttyp.resolve_as
if isinstance(ftyp, types.PlaceholderForType) or isinstance(ttyp, types.PlaceholderForType):
return RequireTypeSubstitutes()
if ftyp is types.u8 and ttyp is types.u32:
return None
return Error(f'Cannot cast {ftyp.name} to {ttyp.name}')
def human_readable(self) -> HumanReadableRet:
return (
'{to_type3}({from_type3})',
{
'to_type3': self.to_type3,
'from_type3': self.from_type3,
},
)
def __repr__(self) -> str:
return f'CastableConstraint({repr(self.from_type3)}, {repr(self.to_type3)}, comment={repr(self.comment)})'
class MustImplementTypeClassConstraint(ConstraintBase):
"""
A type must implement a given type class
"""
__slots__ = ('type_class3', 'type3', )
type_class3: str
type3: types.Type3OrPlaceholder
DATA = {
'u8': {'BitWiseOperation', 'BasicMathOperation', 'EqualComparison', 'StrictPartialOrder'},
'u32': {'BitWiseOperation', 'BasicMathOperation', 'EqualComparison', 'StrictPartialOrder'},
'u64': {'BitWiseOperation', 'BasicMathOperation', 'EqualComparison', 'StrictPartialOrder'},
'i32': {'BasicMathOperation', 'EqualComparison', 'StrictPartialOrder'},
'i64': {'BasicMathOperation', 'EqualComparison', 'StrictPartialOrder'},
'bytes': {'Foldable', 'Sized'},
'f32': {'BasicMathOperation', 'FloatingPoint'},
'f64': {'BasicMathOperation', 'FloatingPoint'},
}
def __init__(self, type_class3: str, type3: types.Type3OrPlaceholder, comment: Optional[str] = None) -> None:
super().__init__(comment=comment)
self.type_class3 = type_class3
self.type3 = type3
def check(self) -> CheckResult:
typ = self.type3
if isinstance(typ, types.PlaceholderForType) and typ.resolve_as is not None:
typ = typ.resolve_as
if isinstance(typ, types.PlaceholderForType):
return RequireTypeSubstitutes()
if self.type_class3 in self.__class__.DATA.get(typ.name, set()):
return None
return Error(f'{typ.name} does not implement the {self.type_class3} type class')
def human_readable(self) -> HumanReadableRet:
return (
'{type3} derives {type_class3}',
{
'type_class3': self.type_class3,
'type3': self.type3,
},
)
def __repr__(self) -> str:
return f'MustImplementTypeClassConstraint({repr(self.type_class3)}, {repr(self.type3)}, comment={repr(self.comment)})'
class LiteralFitsConstraint(ConstraintBase):
"""
A literal value fits a given type
"""
__slots__ = ('type3', 'literal', )
type3: types.Type3OrPlaceholder
literal: Union[ourlang.ConstantPrimitive, ourlang.ConstantBytes, ourlang.ConstantTuple, ourlang.ConstantStruct]
def __init__(
self,
type3: types.Type3OrPlaceholder,
literal: Union[ourlang.ConstantPrimitive, ourlang.ConstantBytes, ourlang.ConstantTuple, ourlang.ConstantStruct],
comment: Optional[str] = None,
) -> None:
super().__init__(comment=comment)
self.type3 = type3
self.literal = literal
def check(self) -> CheckResult:
int_table: Dict[str, Tuple[int, bool]] = {
'u8': (1, False),
'u32': (4, False),
'u64': (8, False),
'i8': (1, True),
'i32': (4, True),
'i64': (8, True),
}
float_table: Dict[str, None] = {
'f32': None,
'f64': None,
}
if isinstance(self.type3, types.PlaceholderForType):
if self.type3.resolve_as is None:
return RequireTypeSubstitutes()
self.type3 = self.type3.resolve_as
if self.type3.name in int_table:
bts, sgn = int_table[self.type3.name]
if isinstance(self.literal.value, int):
try:
self.literal.value.to_bytes(bts, 'big', signed=sgn)
except OverflowError:
return Error(f'Must fit in {bts} byte(s)', comment=self.comment) # FIXME: Add line information
return None
return Error('Must be integer', comment=self.comment) # FIXME: Add line information
if self.type3.name in float_table:
_ = float_table[self.type3.name]
if isinstance(self.literal.value, float):
# FIXME: Bit check
return None
return Error('Must be real', comment=self.comment) # FIXME: Add line information
if self.type3 is types.bytes:
if isinstance(self.literal.value, bytes):
return None
return Error('Must be bytes', comment=self.comment) # FIXME: Add line information
res: NewConstraintList
if isinstance(self.type3, types.AppliedType3):
if self.type3.base == types.tuple:
if not isinstance(self.literal, ourlang.ConstantTuple):
return Error('Must be tuple', comment=self.comment)
if len(self.type3.args) != len(self.literal.value):
return Error('Tuple element count mismatch', comment=self.comment)
res = []
res.extend(
LiteralFitsConstraint(x, y)
for x, y in zip(self.type3.args, self.literal.value)
)
res.extend(
SameTypeConstraint(x, y.type3)
for x, y in zip(self.type3.args, self.literal.value)
)
return res
if self.type3.base == types.static_array:
if not isinstance(self.literal, ourlang.ConstantTuple):
return Error('Must be tuple', comment=self.comment)
assert 2 == len(self.type3.args)
assert isinstance(self.type3.args[1], types.IntType3)
if self.type3.args[1].value != len(self.literal.value):
return Error('Member count mismatch', comment=self.comment)
res = []
res.extend(
LiteralFitsConstraint(self.type3.args[0], y)
for y in self.literal.value
)
res.extend(
SameTypeConstraint(self.type3.args[0], y.type3)
for y in self.literal.value
)
return res
if isinstance(self.type3, types.StructType3):
if not isinstance(self.literal, ourlang.ConstantStruct):
return Error('Must be struct')
if self.literal.struct_name != self.type3.name:
return Error('Struct mismatch')
if len(self.type3.members) != len(self.literal.value):
return Error('Struct element count mismatch')
res = []
res.extend(
LiteralFitsConstraint(x, y)
for x, y in zip(self.type3.members.values(), self.literal.value)
)
res.extend(
SameTypeConstraint(x_t, y.type3, comment=f'{self.literal.struct_name}.{x_n}')
for (x_n, x_t, ), y in zip(self.type3.members.items(), self.literal.value)
)
return res
raise NotImplementedError(self.type3, self.literal)
def human_readable(self) -> HumanReadableRet:
return (
'{literal} : {type3}',
{
'literal': self.literal,
'type3': self.type3,
},
)
def __repr__(self) -> str:
return f'LiteralFitsConstraint({repr(self.type3)}, {repr(self.literal)}, comment={repr(self.comment)})'
class CanBeSubscriptedConstraint(ConstraintBase):
"""
A value that is subscipted, i.e. a[0] (tuple) or a[b] (static array)
"""
__slots__ = ('ret_type3', 'type3', 'index', 'index_type3', )
ret_type3: types.Type3OrPlaceholder
type3: types.Type3OrPlaceholder
index: ourlang.Expression
index_type3: types.Type3OrPlaceholder
def __init__(self, ret_type3: types.Type3OrPlaceholder, type3: types.Type3OrPlaceholder, index: ourlang.Expression, comment: Optional[str] = None) -> None:
super().__init__(comment=comment)
self.ret_type3 = ret_type3
self.type3 = type3
self.index = index
self.index_type3 = index.type3
def check(self) -> CheckResult:
if isinstance(self.type3, types.PlaceholderForType):
if self.type3.resolve_as is None:
return RequireTypeSubstitutes()
self.type3 = self.type3.resolve_as
if isinstance(self.type3, types.AppliedType3):
if self.type3.base == types.static_array:
result: List[ConstraintBase] = [
SameTypeConstraint(types.u32, self.index_type3, comment='([]) :: Subscriptable a => a b -> u32 -> b'),
SameTypeConstraint(self.type3.args[0], self.ret_type3, comment='([]) :: Subscriptable a => a b -> u32 -> b'),
]
if isinstance(self.index, ourlang.ConstantPrimitive):
assert isinstance(self.index.value, int)
assert isinstance(self.type3.args[1], types.IntType3)
result.append(
IntegerCompareConstraint(
types.IntType3(0), types.IntType3(self.index.value), types.IntType3(self.type3.args[1].value - 1),
comment='Subscript static array must fit the size of the array'
)
)
return result
if self.type3.base == types.tuple:
if not isinstance(self.index, ourlang.ConstantPrimitive):
return Error('Must index with literal')
if not isinstance(self.index.value, int):
return Error('Must index with integer literal')
if self.index.value < 0 or len(self.type3.args) <= self.index.value:
return Error('Tuple index out of range')
return [
SameTypeConstraint(types.u32, self.index_type3, comment=f'Tuple subscript index {self.index.value}'),
SameTypeConstraint(self.type3.args[self.index.value], self.ret_type3, comment=f'Tuple subscript index {self.index.value}'),
]
if self.type3 is types.bytes:
return [
SameTypeConstraint(types.u32, self.index_type3, comment='([]) :: bytes -> u32 -> u8'),
SameTypeConstraint(types.u8, self.ret_type3, comment='([]) :: bytes -> u32 -> u8'),
]
if self.type3.name in types.LOOKUP_TABLE:
return Error(f'{self.type3.name} cannot be subscripted')
raise NotImplementedError(self.type3)
def human_readable(self) -> HumanReadableRet:
return (
'{type3}[{index}]',
{
'type3': self.type3,
'index': self.index,
},
)
def __repr__(self) -> str:
return f'CanBeSubscriptedConstraint({repr(self.type3)}, {repr(self.index)}, comment={repr(self.comment)})'